您当前位置:首页 > 科技论文

人工神经网络应用于海洋领域的文献综述*_海洋环境监测

发布时间: 2016-08-31


导读::船舶与海洋工程。海洋预报与预测。海洋资源评估。海洋环境监测。人工神经网络应用于海洋领域的文献综述*。
论文关键词:人工神经网络(ANN),船舶与海洋工程,海洋预报与预测,海洋资源评估,海洋环境监测

  人工神经网络是对人类大脑特性的一种描述。它是一个数学模型,可以用电子线路实现,也可以用计算机程序来模拟。是人工智能研究的一种方法。主要功能有:联想记忆、分类识别、优化计算、非线性映射。由于其具有好的容错性、并行处理信息、自学习性及非线性映射逼近能力等特点,因此被广泛的应用于各个领域。
  ANN在海洋领域的应用起步较晚。20世纪90年代以来,国内外掀起了应用ANN研究海洋问题的热潮。相比传统方法,由于ANN提高了预测的准确性,减少了对数据的要求并且便于应用,到目前为止,ANN模型的应用已经遍布海洋工程(包括港口、沿海、近海和深海工程)海洋环境监测,海洋预报与预测,海洋资源与环境等各方面,并且应用前景不断扩大。本文通过梳理相关文献,分析和总结了ANN在海洋领域的研究进展和主要成果,以期为相关研究提供参考。
  1 船舶与海洋工程
  钢材腐蚀问题是海洋工程的重大课题。国内许多学者通过建立ANN模型考察海水环境相关参数与钢材腐蚀速度的相关性。刘学庆等根据四层BP神经网络分析了3C钢腐蚀速度与海水环境参数的相关性,建立了3C钢在海洋环境中腐蚀速度的人工神经网络模型,证明该方法在监测与评价区域海洋环境腐蚀性方面具有实际应用价值[1]。邓春龙等研究建立了海洋环境材料腐蚀与防护数据库,收集和整理了大量的材料腐蚀数据。并在此基础上建立了误差反传(BP)人工神经网络预测模型和灰色GM(1,1)腐蚀预测模型。从而形成一套较完整的数据采集、处理和分析网络系统[2]。王佳等采用电化学、人工神经网络和数据库方法研究了5种海洋工程钢材在深海环境中非现场腐蚀行为评价技术。结果表明,结合采用多种非现场方法可以可靠评价深海环境钢材的腐蚀行为[3]。刘艳侠等同样利用三层BP神经网络,根据已有的3C钢在不同海水环境参数下的腐蚀速度数据,建立了3C钢在海洋环境中腐蚀速度的人工神经网络模型;并分析预测了海水环境参数与腐蚀速度之间的关系 [4]。
  ANN在海洋工程中的应用主要是海洋平台的抗击性和稳定性的模拟。许亮斌等针对海洋平台桩基模拟中存在的问题,将神经网络应用于桩基分析 [5]。徐发淙在引进遗传算法的基础上构造了工程结构优化的神经网络模型,计算结果表明这一方法具有很好的稳定性和全局收敛性[6]。周亚军等将经典最优控制算法与人工神经网络相结合,采用BP神经网络模型,实现了受随机波浪力作用下的海洋平台的振动主动控制[7]。由于神经网络的优越性能,克服了传统算法本身的时滞问题,为海洋平台的振动控制提供了一条新的思路。
  以上学者都对神经网络进行了一定程度的改进和完善,达到了良好的模拟和预测效果,推进了海洋工程中ANN理论的发展。除此以外,针对波浪数据的完备性对于海岸海洋工程设计的关键作用, 人工神经网络作为一个具有高度非线性映射能力的计算模型,在工程中具有广泛的应用前景。在数值预测方面,它不需要预选确定样本的数学模型海洋环境监测,仅通过学习样本数据即可以进行预测论文格式范文。
  2 海洋预报与预测
  赤潮作为海洋灾害的一种,对海洋经济造成巨大影响。蔡如钰利用人工神经网络BP算法,建立了赤潮预报模型 。杨建强通过比较发现人工神经网络方法在模拟和预测方面优于传统的统计回归模型,具有较强的模拟预测能力及实用性 。在此基础上,为克服BP网络训练易陷入局部最优的缺点,王晶采用遗传算法改进网络训练方法,建立赤潮生物密度与环境因子的人工神经网络的预报模型,保证网络达到全局最优。此外,还有部分学者将改进的人工神经网络模型用于赤潮预报,经过实证研究,取得良好的预测效果。
  潮汐预报对人类活动和降低海洋环境建筑成本是非常重要的。为了解决潮位预测中存在的时滞问题,提高预测精度,不少学者进行了初步探索,并且普遍认为BP模型应用于潮汐预报具有较高的预测精度和良好的泛化能力,它为海洋潮汐预报工作提供了一种全新的思路和方法。张韧利用人工神经网络BP模型及其优化算法,建立起了赤道太平洋纬向风和滞后的东太平洋海温之间的映射关系和预报模型,结果表明,这种方法可有效用于辩识和反演复杂的大气、海洋动力系统及其预报模型.冯利华针对海洋预报问题,初步建立了基于神经网络的预报分析系统,给出了应用实例。以我国东南沿海地区一次登陆台风所造成的最大24小时暴雨量为例来说明ANN在海洋预报中的应用问题。罗忠辉采用人工神经网络智能方法,建立了多参数声速预报神经网络模型海洋环境监测,克服了回归拟合方法在获得海底沉积物声速预报中存在的不足,为海底沉积物的声速预报提供了一条新途径。
  3 海洋资源评估
  张富元等利用东太平洋CC区多波束海底地形测量、结核覆盖率深拖系统探测、结核丰度地质采样和地球物理地震勘探资料,运用板块构造和沉积动力学理论,并与丰度趋势面和神经网络分析结果对比,对东太平洋CC区构造与多金属结核资源效应关系进行了探讨。李少波等讨论了如何利用神经网络预测天然气水合物的合成和分解。利用了声速、幅度、频率来反映天然气水合物的合成,建立了一个3层前向型网络,通过实验,人工神经网络的引用取得了良好的效果。近年来人工神经网络还越来越多地被用来预测水资源。在水资源应用中,前馈神经网络建模技术是使用最广泛的类型。
  4 海洋环境监测
  非法排放油污和海上漏油事件对海洋生态系统造成的严重危害,人工神经网络可以有效的用于海水石油污染诊断。李伟认为海中悬移质是决定海洋光学性质、海洋水质,河口海岸带演变动力过程的重要环境参数。利用模拟遥感反射比数据集建立人工神经网络反演悬移质浓度,并利用东中国海现场同步数据对该算法进行验证,神经网络技术对于反演大洋水和沿岸海域中的组分浓度有一个很好的前景。刘辉等采用BP神经网络和广义回归神经网络2种方法进行训练,建立了南海南部海区的上混合层深度人工神经网络计算模型 。结果显示,人工神经网络方法精度较高,是一种切实可行的上混合层深度估算方法。
  5 结语
  人工神经网络在海洋领域的应用遍布海洋工程、海洋科学技术、海洋环境资源等各个方面。国内外学者根据研究的需要设立了不同的ANN模型,随着时间的发展,这些模型的预测和分析能力逐步完善。大量实证结果表明,很多ANN模型都取得了良好的模拟和预测效果。大部分的人工神经网络模型对传统的统计回归计算、时间序列分析、模型匹配和数值方法等产生了替代或补充作用。在某些情况下,神经网络的应用减少了对数据的要求。在未来,随着现有模型的不断完善和ANN模型缺陷的不断纠正,先进和混合神经网络结构很可能会在海洋领域更多方面得到广泛应用。

参考文献
[1]刘学庆,唐晓,王佳.3C钢腐蚀速度与海水环境参数关系的人工神经网络分析[J].中国腐蚀与防护学报, 2005,(1):11-14.
[2]邓春龙,孙明先,李文军等.海洋环境中材料腐蚀数据采集处理网络系统的研究[J].装备环境工程,2006,(3):58-62.
[3]王佳,孟洁,唐晓等.深海环境钢材腐蚀行为评价技术[J].中国腐蚀与防护学报. 2007,(1):1-7.
[4]刘艳侠,高新琛,张国英等.BP神经网络对3C钢腐蚀性能的预测分析[J].材料科学与工程学报,2008,(1):94-97.
[5]许亮斌,陈国明.神经网络在平台桩基分析中的应用[J].中国海上油气(工程),2001,(1):7-10.
[6]徐发淙.海洋工程结构优化的遗传Hopfield神经网络算法研究[J].中国海洋平台,2001,(5-6):58-61.
[7]周亚军,赵德有,马骏.基于人工神经网络的海洋平台振动主动控制[J].船舶力学, 2003,(5):65-69.


首页 动态 风采 学术交流 会员风采 会员服务 联系我们